Bocconi

21 NOVEMBER 2023 04:00 PM

Zoom meeting (Streaming in Bocconi University Room 3-E4-SR03 Via Röntgen 1, Milano, 3° floor)

Mechanisms for the brain-wide dynamics of functional networks through communication subspaces

Abstract

Speaker

Ulises Pereira Obilinovic Scientist

The Allen Institute for Neural Dynamics, Seattle, WA

Recent neural recordings with high density probes have shown that neural activity spans a number of dimensions much lower than the number of recorded neurons. This low-dimensional dynamics can be persistent in time for some areas while transient in others. Strikingly, co-activated areas change on task demands, generating functional networks that correlate with behavior and internal processes across the brain. What are the mechanisms for the brain-wide dynamics of functional networks? We hypothesized that low-dimensional neural activity is routed through communication sub-spaces that can flexibly configure functional networks.

Here we present a theoretical framework where we explore this hypothesis in multiregional network models of the mammalian cortex. We model each brain region as a recurrent neural network with a mixture of symmetric, asymmetric, and random connectivity. Depending on the alignment of the long-range projections with the local symmetric and asymmetric connectivity, multiple functional networks can be embedded in the multi-regional dynamics. The dynamics of the functional networks can be persistent or transient depending on this alignment. Importantly, we show that low-dimensional dynamics can be flexibly routed by sub-cortical inputs that effectively create communication sub-spaces aligning the local symmetric and asymmetric connectivity depending on task demands. We applied our framework to the mouse, monkey, and human anatomical data recapitulating several known results on brain-wide activity in electrophysiological and imaging experiments.